Forge Nano and Mineral Commodities enter into MOU to produce ALD-coated natural graphite anode powders.

Forge Nano Inc. uses Atomic Layer Deposition to improve performance of Li-ion battery anode materials.  

Mineral Commodities Ltd (ASX: MRC) is a global mining and development company focusing on developing high-grade mineral deposits within the battery materials sector.

Mineral Commodities Ltd., Perth l, WA, Australia, (ASX: MRC) and Forge Nano Inc., Colorado, USA have signed a memorandum of understanding (“MOU”) for the use of Forge Nano’s proprietary Atomic Layer Deposition coating technology (“ALD”). Forge Nano’s surface engineering platform technology will be used to apply atomic level coatings to Mineral Commodities’ natural graphite materials. 

Dr. Surinder Ghag, MRC’s Chief Technology Officer, explains: “By combining our high-quality natural graphite with Forge Nano’s ALD coating technology, we can produce a high-performing, cost-competitive graphite anode powder for lithium-ion batteries. We’re very excited about this long-term partnership as we target sustainable European anode production in the coming years. This collaboration enables the Company to continue building its technical expertise as it moves towards demonstrating a downstream process for graphite spheronization, purification and coating.” 

Paul Lichty, Forge Nano’s Chief Executive Officer, adds: “We are excited to be fully supporting Mineral Commodities as a key technology partner in their path towards large-scale anode powder production. Our high-throughput ALD coating technology will enable them to compete with established anode producers globally. The collaboration adds to our growing set of partnerships in the graphite anode space, a testament to the value of our technology.”

Why does the ALD coating process work so well for graphite anode powders?

ALD coatings on graphite anode powder stabilize the surface defects. This ALD stabilization results in better anode powders with higher discharge capacities, longer life, and improved rate performance. Batteries using ALD-stabilized graphite show increased cycle life, reduced capacity fade, increased conductivity, and greater stability under a variety of conditions such as high voltage, fast charge, or high/low temperature storage and operation. Additionally, Atomic Layer Deposition (ALD) is a potential replacement for carbon coatings on natural graphite powders, a process that few companies have the know-how for.