Deactivation and Cathode-Healing™ to support the Low-Cost US Supply Chain

Military Power Sources Committee
Battery Recycling Symposium
May 6, 2021

Steve Sloop, OnTo Technology

Work funded in part by Defense Logistics Agency SP4701-19-C-0055.

Distribution authorized to U.S. Government Agencies only, to protect information not owned by the U.S. Government and protected by a contractor’s ‘limited rights’ statement or received with the understanding that it not be routinely transmitted outside the U.S. Government (determination made March 1, 2017). Other requests for this document shall be referred to the DLA Small Business Innovation Program at DLASBIR2@dla.mil.

Work funded in part by US Department of Energy office of EERE and VTO, DE-EE0008475
Challenges and Opportunities for Li-ion Cost Reduction

Safe Transport
- Deactivation
- Eliminate flammability and reactivity risks
- Reduce cost of shipping

Efficient cathode recovery
- High yield harvesting of electrode material
- Cathode-healing®
 - Flexible to cathode chemistry
- High quality, low cost cathodes
- Manufacturing scrap and end-of-life
Recycling Market

- Li-Ion battery use rapidly growing
 - EV sales increased by over 5X from 2015-2020*

- 2 million metric tons of Li-Ion battery scrap needs to be recycled in 2030.

- U.S. recycling rate currently ~5% (U.S. Dept. of Energy)

- Cobalt content decreasing

*Victor Irle, EV Volumes, Advanced Automotive Battery Conference (2021)
Safety
Battery Risk

The only part that is addressed in best-practices, discharging of cells

\[\text{Risk} \sim \sum \text{State of charge} + \text{State of Health} + \text{XS Li} + \text{ely} + T + t \]

State of Health \sim \text{gas content, electrolyte aging, lithium dendrite, delaminated carbon, lithium, container corrosion, fuse-blown, etc.}

Risk reduction through discharge does not address potential SOH challenges

Recent explosion at Brunp recycling
Bolt cutter vs. fully charged battery - simulates shredding a charged cell

- Battery burst into flames instantly
- Temperature went over 600°C (Molten Al)
OnTo Patented Deactivation
A service to remove hazards from end-of-life Li-ion

- OnTo’s prototype uses CO$_2$ to transform Li-ion batteries to non-hazardous materials.
- Resolves reactivity and flammability.
- Can be practiced prior to transport. ($0.11/kg vs. $2.49/kg)

Any:
- State of charge
- State of health
- Chemistry
- Format

Patents: 8,497,030; CN102160220A; 7,198,865, and pending
Same battery deactivated and cut open
Safety Validation
The only way to guarantee safe EOL batteries
OnTo Decentralized Battery Deactivation and Harvesting Service

makes the spoke make sense

• Batteries deactivated at or near local collection sites.

• Safe, inexpensive transport to a destination recycling facility.

• Rail, highway, air, and seaport transportation.

• Reproducible concept world-wide.
Efficient materials recovery
Safe Deactivation

Cells, Modules, Packs → Deactivation

Disassembly (Shred, pulverize, etc.) → Sift/Float

Plastics, Metals → Mixed electrode material

Safe Inexpensive Transportation

Cathode-Healing™
Patented direct recycling method

Autoclave
Conc. Li solution & electrode material → Separation

Cathode → Graphite electrode

Heat

Healed Cathode

Upcycle to new chemistry
Cathode Precursors

Patents: 9,825,341 B2; 9,484,606 B1; 9,287,552 B2; EP2248220; 8,846,225 B2; 8,497,030 B2 ; 10,014,562; 8,832,329; 8,497,030; CN102160220A
Cathode-Healing® Direct Recycling

- Easily harvested electrode material and foils

End-of-life
Cu: 25ppm (UD: baseline)
Fe: 81ppm (50:baseline)

Healed
Cu: Undetected
Fe: 12ppm

Li_{(1-x)}Ni_{0.5}Mn_{0.3}Co_{0.2}O_2
LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2

SEI and binder are removed after processing
OnTo cathode-healing® of Old-Scrap NCM622, 523

Cells made from healed material

Cathode-Healing® patents: 9,484,606; 10,333,183; 8,846,225; 9,825,341; 9,287,552; & PCTs
OnTo cathode-healing® of New Scrap NCM 811

NCM 811 produced from OnTo’s Cathode-healing® process

Cathode-Healing® patents: 9,484,606; 10,333,183; 8,846,225; 9,825,341; 9,287,552; & PCTs

OnTo Technology LLC
Cathode Healing Cost Performance Data for an NCM

- **Operating cost**: $2.00-5.00/kg for cathodes with value of $10-$90/kg.

- **Yield**: Essentially quantitative for cathode to cathode.

- **Scalable**: Simulated for large scale processes currently used industrially.

![Cost Breakdown Chart]

- Healed-Cathode: $3.60
- Precursor:
- Transportation:
- Deactivation:

![Cost Comparison]

- OnTo: $3.60
- Incumbent: $5.00
Market Size and Characteristics along the value chain

Metal-salt → Intermediate → Cathode → Slurry → Coating → Assembled Cell → Formed Cell → Package and use

New scrap
(3-7.5% of manufacturing)

Old scrap

$3-7.5 Billion

$24 Billion
Nissan Leaf Manufacturing Scrap

- **Cathode-Healing® patents**: 9,484,606; 10,333,183; 8,846,225; 9,825,341; 9,287,552; & PCTs
LFP from Cathode-Healing®
(the brave new world of recycling cobalt free lithium-ion)

Cathode-Healing® Patents: 9,484,606; 10,333,183; 8,846,225; 9,825,341; 9,287,552; & PCTs
Competition: pyro / hydrometallurgy

<table>
<thead>
<tr>
<th></th>
<th>Logistics Safety (Safe Spoke)</th>
<th>Cost</th>
<th>Flexibility to chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyro</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hydro</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OnTo</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

LFP Case Study

<table>
<thead>
<tr>
<th></th>
<th>Pyro / Hydro</th>
<th>$ / Ton Feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Value</td>
<td>-$3000</td>
<td></td>
</tr>
</tbody>
</table>

OnTo Technology

<table>
<thead>
<tr>
<th></th>
<th>$ / Ton Feed</th>
<th>Total Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Study</td>
<td>$2,728</td>
<td>$2,728</td>
</tr>
</tbody>
</table>
Go To Market Operational View

- Pilot conception
 - End-to-end
 - Market Niches for sub-processes
- Modularly scalable

Pilot facility using OnTo Technology
Pilot Pro-forma

- **Capacity:** 1000 tons batteries/year
 - Operating at 50% capacity Y1
- **Battery Feedstock:** 50% NMC 622, 50% LFP
- **Labor:** 6 FTE
- **Cathode-Healing:** Healed cathodes sold at a deep discount, 75% market value
 - $0.11/kg shipping, paid by customer
- **For comparison, metal sulfate recovery:** Metals sold at March 2021 market prices with 100% metals recovery
 - CoSO₄
 - NiSO₄
 - MnSO₄
 - Li₂CO₃
 - Includes $7.00/kg-battery service fee
 - Operating cost based on incumbent hydrometallurgy, $21,590/ton-cathode
Patented Technical Capabilities:

- **Battery Deactivation**: Patented US 8,823,329; 7,198,865; 8,497,030; Pending 2019 & PCTs
- **Whole Battery Rejuvenation**: US 8,067,107
- **Materials Harvesting**: US 10,333,813 & PCTs
- **Cathode-Healing®**: 9,484,606; 10,333,183; 8,846,225; 9,825,341; 9,287,552; & PCTs
- **Materials Characterization**: XRD and electrochemical analysis, partners with OSU for microscopy, ICP,
- **Cell Building and Benchmarking**: Cell making and testing.
OnTo Partners & Customers

[Logos and brand names of various organizations]

OnTo Technology