

Atomic Layer Deposition for Enhanced Reactivity and Stability of **Biomass Conversion Catalysts**

W. Wilson McNeary, Gabriella Lahti, Kinga Unocick, Sean Tacey, Carrie Farberow, Michael Griffin, Kurt Van Allsburg, Chris Gump, Arrelaine Dameron,³ Karen Buechler,³ Mike Watson,⁴ Derek Vardon¹ (contact: derek.vardon@nrel.gov)

¹National Renewable Energy Laboratory, Golden, CO; ²Oak Ridge National Laboratory, Oak Ridge, TN; ³Forge Nano, Louisville, CO; ⁴Johnson Matthey, London, UK

ALD-coated

50

Chemistry Challenges of Biomass Conversion

- Synthesis & Upgrading requires robust and economical catalytic processes
- Harsh process conditions (temperature, acidity, H₂/O₂, high moisture) impose significant barriers
- Thin metal oxide coatings via atomic layer deposition (ALD) developed for next-gen heterogeneous catalysts

TiO₂ ALD: Increased Activity, Improved Thermal Stability and Sulfur Tolerance

surface affects reactant binding to Pd

ALD-coated catalyst retained 86% of initial activity after exposure to sulfur

Activity increased following oxidative thermal treatments

ALD overcoat improves hydrothermal

Application of ALD Coatings

Consumption of energy and critical materials

TiO₂ and Al₂O₃ ALD overcoats applied to supported Pd catalysts for hydrogenation reactions

Goal 1 Improve catalyst stability

Scalable ALD synthesis

20 h-1 g_{cat}-1 (g_{MA-1} 100-q ALD-coated Rate 10 10-g ALD-coated Muconic Conv 100-mg ALD-coated Settle, et al (2019)

12

4

Muconic acid HYD

(h-1)

P.

Normalized by

CO dispersion

Pd/Al₂O₂

Al₂O₂ ALD overcoat improves stability in muconic acid conversion to adipic acid, an important bioproduct

Time on Stream (h)

Improvements demonstrated with ALD fabrication at multiple scales

Al₂O₃ ALD: Improved Leaching and Thermal Stability

>9x greater surface area retention than uncoated TiO2 powder

Pd leaching during Muconic Acid HYD

0 0		
Catalyst	Leaching (Pd ppm)	Leaching Rate (µg _{Pd} h ⁻¹)
Uncoated (Pd/TiO ₂)	1.4 ±0.7	0.32
100-mg ALD- coated	0.3 ±0.1	0.07
10-g ALD- coated	0.08 ±0.04	0.02
100-g ALD- coated	0.05 ±0.01	0.01

Pd/TiO₂ Catalysts after 700°C Treatment

>80% loss of surface area <25% loss of surface area

Conclusions and Future Outlook

ALD-enabled catalysts show superior performance vs. conventional catalysts in hydrogenation reactions

- Observed leaching and stability benefits maintained upon ALD synthesis scale-up
- Ongoing work focused on improving leaching resistance in oxidative environments